Open PaperOpt

A Monte Carlo simulation tool for simulating light scattering in paper and
prints

Technical Description

N NS
°““PAPER "
'OPT

Version 1 —2010/01/11

Open PaperOpt

Technical Documentation 1.0

Table of Contents

IGNU General Public License (GPL).......ccocuiiiiiiiiiie ettt et saaeae s 5
N Tee] oL OSSP UPP SRR 5
3Program overview and Main ClASSES.........cuieruieeriieeriieeiieeeiteeeteeesreeesaeeessaeeeareeesseeeesaeessaeesnseeeans 5
B IWAVEPACKEL. ...ttt sttt ettt et s s 6

3. 2STMVOIUIMIE. ...ttt sttt e a e et esh e et e e sbee e abeesbeeenbeesaeesbeenane 6
3.3StructureObject (surfaces and JaAYErs).......cccuevvuieriiriieiieeieeee et e 7
B3I SUITACE. ..ttt ettt ettt e e et e e e et 8

3.3. 2HOMOZENOUSLAYET.....ccouuiiiiiiiiieiiie ettt ettt ettt e et e et e e st e e st e e e e e snabeaeeeens 8

R I N 1218 T 8 (o121 | BF: S S SRR 8

B4 COIMPONENLS.eeeuiiieeiiteeitee ettt e ettt e et e e ebteesitteesateeesabeessabeesbbeesasbeesasbeesabteesaseeesnsaeeeessnnssnaeeeeennnns 9
RIS 3T 4 LN 10111 (o< 9

B ODIETECTOTS. ...ttt et ettt bttt b e et b e et b e et e b e et e b e e e et e e e e e 9

B TDISEITDULION. ...ttt ettt ettt et e bt e et e bt e e st e e bt e e st e e bt e eab e e bt e e e ennbeeeenaeee 9

R B 1 To] I < OO URUPPPRPPPR 10

R 28 (SO RSP S RROPSRPR 11
IR0 01101 AT PPP SRR 11

R IR I, €LY B T3 11 PP PPPPPPPPRT 11
IR 10 1113031 AP UTUPRRUPPPRPRRRR 12
BLOSHALICSIEEL. ...t ettt e bt e e et e e eaeaeeas 12
3.9.1 FIDETSEZIMENL........iiiiiiiieiieeiieite ettt ettt ettt ettt e et eesstesabeebeeenbeesaeeeennbeeesansaeeenns 12

RN S 1< U PSPPSS 12

3.0.3 SUITACC. ettt b ettt b ettt sttt et e e e 12
3.9.4Paper StruCtUre GENETALOT.........ceeiiiiiieeeriiieeeeeiieeeeesieteeeseieeeessetreeeesnreeesennaeeeeessanannnnnnes 13
3.9.5Setup the data model for light Scattering...........cccevuiriiiiriieiieiiieeeie e 14
4Used lIDraries and SETINE........ccveiecuieiriiieeeiieeeieeesiee et e ettt esteeessteeessaeessseeesssaeessssseeeesssnnssseeeeeeannes 14
SDALA OTTNIAL. ...ttt ettt ettt st be et e b et et sb ettt eae et e at e e eneees 15
5. 1SPECIHTICAtION FIIES....eeeiiieiiiie et e et e et e e e e e eraa e e e e e easnnneeaeens 15
5.2The XML SCREMA.......eiuiiiiiiiiiiitetec ettt sttt sttt et be e 16
S.3EXErNal INPUL FIIES...ccuviiiiieiiie ettt e e e e e e e e eens 16
5.4Height maps used in SUrface Classes.........ccueiuieiiiiiiiiniieeiee e 16
5.5Tables used in the DistributionTable Class.........cccveeviiiiiiieiiiierieee e 17
5.6Tables used in the DistributionComponents Class...........cccueeeveerieeiiierieeiiieniee e e eiiee e 17
5.75tatic fIDEr NEIWOTKS.....co.eiiiiie e e 17
OLiISt Of INPUL PATAIMETETS.eetieiiieiieeiie ettt ettt et e st e et e eteebeesaeeesseessseeseesseeenseessseenseesnsesenneeas 18
0. LSUITACES. ...ttt ettt ettt e bt e ea bt e bt e et e e bt e s it e e bt e saaeebeeean 19

T 0 5 4 1 SO OO PO PP P S OPPPRPPP 19
6.1.2t0POBIIINEAT........eeiiiiiieeiiee et e et e e st e e st e et e e e tbeeenaeeenaeeeaaeeennnnns 19
6.1.3t0pOTTIANGUIALE.eeeeiieeiiieee e ettt e e et e e enreee e 19

6. 1. 4f1atNOTIALcoiiiiie ettt et e st e e eabaee e 20

0. L.5SUDFIAL. ...ttt ettt sttt et 20

(I I <) ¢TSRS 21
6.2. 1HOMOZENENOUSLAYET.....c...eiiiiiiiiiiiiiie ettt ettt e e e e e 21

Open PaperOpt

0.2. 2 StaAtISTICALLAYET.eecuiieiieeiie ettt ettt ettt et e e et e e st eebeestaeesbeessaeebaeeaaeenbeennaeean 21
0.2.3DASESNEET2........eieiieeeteee ettt ettt ettt bt e et eeeenbeeeeanbaeeens 21
0.2.45tatiC DASESNEEL.......cueiiiiiiiiiiiirec e 23
0.3LIGNE SOUTCES. ...cvtitieiiieiierieete ettt sttt ettt et st e bt et e et e e bee e e 23
0.3 IBOAML.....eiiiiiiiiiiiiic e st 23
0.3.2EITCPN0. ...ttt et ettt e a e et e e bt e e e enneeeeens 24
0.3.3LaAMDEIT. ...ttt ettt st e 24
3R B I <ol 10) ¢ O OO PO PP PP 25
0.4 TEITOT. ...ttt ettt et et sb et st et e e 25
0.4.2ARS . ettt h e bbbt n ettt et e e 25
0.4.3TIMAZEC. .. .eeeeieeeieeetie e ettt e et te e et eeestee e ttee e et e e e bt e e e bt e e abeeeanbeeeaabeeeateesbteeenbaeeenteeennteeeeeeannnnes 25
0.4 4CITEPINO. ...ttt ettt ettt e bt e e nbe e teeenteenaaeeean 25
0.4.5ARSGIODE. ...ttt ettt ettt et e et 25
0.4.0PLR ... bbbttt et e b ettt e 26

4 1133 L SR PSPR 26
TLARS ettt bbbt bttt b e bbbt h et ettt es 27
0 B 2311 o 2 OSSPSR 27
TL2ZHDEF ettt ettt beeneee 27

T 2ARS GLODE......eneieeee ettt ettt ettt ettt et e e e 28
T2 1BINATY ...ttt ettt ettt et e b e e bt e et e e bt e eat e e bt e enteebeesateenbeeannreeeen 28
T2 2HDF ..ottt ettt h et eate bt et e e e enaeen 28
R] 21 1<) 1 0 OO OO PR PSUPRRRRRPI 28
R TR 211 o 2SRRI 28
T3 2HDEF et bbbttt ebeeeaee 29
TAPLR ...ttt b ettt b e et e a et et e e a e e bt et e e et e e enreeenee 29
T A TBINATY ..ottt et ettt et e et ete e e et e e bt e et e e bt e e at e e bt e e ateebeesateenbeeennreeeen 29
TA2ZHDE ... ettt ettt et h ettt e st et e enteeneeea 29
T.SIIMAZE. ..ottt ettt ettt e st e e e ettt e e e e e e aabbaeeee s 30
TS IBINATYeiieiiieeeiie ettt ettt e ettt e ettt e st e e s ba e e e bt e e e taeenabee e tbeeenbeeesaeeennteeenneaeeennnnes 30
TS 2ZHDEF et bbbttt beeeaee 30
BOMINE. ..ttt ettt e ettt e et e e bt e e sae e bt e ssbeesteeesseesbeensseenbeeesaeenbeeasbeensaeenteennbeeeentbeeeeansaaeens 31
8. INAMING CONVENEION.....eeuutieutieititetieeteette et esteesiteeteeeateesteesateesteeaseeseesnseeseeenseeseesnseenseesnnseeean 31
B.2JAVADIOC. ...t e 33
IR B 0> Q05 | FO O PR P TP PPPPON 33
1825 €111 0] 1S PSP PPP 34
9.1Light sOUTCES and dELECLOTS.ccuuieiieiiieiieeie ettt ettt ettt et e et e e eateesaeeas 34
1 10.2Statistical StruCtural LaYETS.cccuiieiieiiieiieeie ettt te e eebeestae e seraeeeenee 37
2 10.3Static StrUCtUral JAYETS.couiriiiiiiiirieeiee ettt 37

Technical Documentation 1.0

1 GNU General Public License (GPL)

Open PaperOpt is a free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; version 3 of the
License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Open
PaperOpt. If not, see http://www.gnu.org/licenses

2 Scope

Open PaperOpt is a C++ Open Source Monte Carlo simulation program designed for calculating
light scattering in paper and board. It describes the simulation volume as a three-dimensional
layered structure that includes rough surfaces, homogeneous scattering layers, and structured layers.
The structured layers describe composite layers and simulate light scattering from a system of
geometric components such as hollow flattened cylinders and ellipsoids representing e.g. fibres,
pigments, or pores. The program treats the incident light as indivisible wave packets and calculates
their path according to physical rules and some semi-empirical approximations. Setting the
distribution of the initial position, polarisation, and direction of the wave packets allows the
simulation of virtually any light source. In the same way, detectors with defined geometry and
response characteristics can collect the reflected and transmitted wave packets.

This document describes the program structure and coding conventions, external libraries, and
file formats used by the program. It is intended for developers who wish to implement new objects
or physical models, as a complement to the Doxygen (see Error: Reference source not found)
generated documentation, which describes classes and methods in detail. The input specifications
and output results are saved in binary, HDF5, and XML files. The user of the program can jump to
the section 5 on file formats. This document does not however describe the physics involved in the
different processes.

3 Program overview and main classes

Light is represented as indivisible wave packets in the WavePacket class. The Main program starts
by initialising the random generator and calling the Input class for parsing the inputs and
generating the simulated structure, light sources and detectors as a SimVolume class. The program
goes then through three main loops simulating light scattering for each wavelength, light source,
and wave packet. The initial state of the wave packet is generated by the LightSource class. The
wave packet is then sent onto the simulated structure in the Process method of the SimVolume
class and returned as absorbed, transmitted, reflected, of in error state. The main function updates
then the simulated reflectance and transmittance and sends the wave packet to the different
Detectors defined in SimVolume. The main program can also be called to generate static layers
(see 3.3.4).

http://openpaperopt.sourceforge.net/Doxygen/index.html
http://openpaperopt.sourceforge.net/Doxygen/class_wave_packet.html
http://www.gnu.org/licenses
http://openpaperopt.sourceforge.net/Doxygen/class_detector.html
http://openpaperopt.sourceforge.net/Doxygen/class_light_source.html
http://openpaperopt.sourceforge.net/Doxygen/class_sim_volume.html
http://openpaperopt.sourceforge.net/Doxygen/class_i_o_1_1_input.html
http://openpaperopt.sourceforge.net/Doxygen/_main_file_8cpp.html

Open PaperOpt

Initialise random generator

Layer generation

Type _ N .
Light scattering simulation
Call static Parse simulation inputs
layer generation and generate SimVolume
\
Initialise wave packet >

LightSource::Process

Process wave packet onto structure
SimVolume::Process

Process Detectors

yes

More wave packets,
light sources or wavelength

Write Output and
detectors results

Figure 1: Flow chart of the Main function.

3.1 WavePacket and LightSource

Light is represented by indivisible wave packets that interact with the simulated structure. A
WavePacket is defined by its position, direction, and polarisation. Only linearly polarised light is
currently implemented. A single wave packet is initialised by a LightSource each time a new wave
packet is sent onto the simulated structure, and is finally processed by the detectors. Light sources
initialise the direction, polarisation, and the target point on the plane with z=0 (not necessarily the
first hit point on the top surface that might fluctuates around z=0). For spectrally resolved
simulations, the wave packet is also affected a weight according to the spectral distribution of the
light source. This weighting is important when fluorescence occurs.

The wave packet's optical path is incremented and its wavelength updated in case of
fluorescence. Since the wave packet is sent to nearly all functions, it can also carry information
necessary at different simulation stage or layers, such as last position on a surface, or the last
computation error.

3.2 SimVolume

Sim Volume organises the different objects in the simulated structure. It contains the different light
sources, objects (surfaces and layers), and detectors in the simulation. It points to the first object,

http://openpaperopt.sourceforge.net/Doxygen/class_sim_volume.html
http://openpaperopt.sourceforge.net/Doxygen/class_light_source.html
http://openpaperopt.sourceforge.net//Doxygen/class_wave_packet.html

Technical Documentation 1.0

which is surrounding medium above the simulated structure to get the incoming refractive index,
and to the first detector. Each object points to its previous and next object and the same applies to
detectors.

The Process method called after light source generation in the main program is the scattering
simulation main function. It sends the wave packet to the top surface and then to the other layers
and surfaces until the wave packet has reached the first object (top surrounding), the last object
(bottom surrounding), or has been absorbed.

The simulated structure is made of StructureObject, which are layers or surfaces delimiting the
layers.

z(gm)

x 10
y (um) X (um) X1

Figure 2: Example of simulated layered structure. Each layer is contained by two surfaces that
define the layer thickness variation.

3.3 StructureObject (surfaces and layers)

StructureObject (here called object) is an abstract class from which all surfaces and layers are
derived. Each object points to its previous and next object so that the wave packet can be sent to the
next object for processing, when it leaves the current object. The next and previous object of a
surface is always a layer, and vice-versa.

All object must have the same size. Each time the wave packet is translated within a layer, the
Process method calls the PropInLayer method to check for interception with the upper or lower
surface, or with the lateral boundaries defined by the size of the the layer. PropInLayer calls the
Intercept method of the next surface to check for interception and implements the periodic
boundary conditions if the wave packet hits a lateral boundary.

Process returns the number of objects the wave packets will pass through until the next active
object at its current position. The value is positive if the wave packet is travelling upwards, and
negative if the wave packet is travelling downwards. In case of absorption within the object, it
returns 0. A wave packet leaving a layer will most often be sent to the next surface in the
SimVolume:: Process method. However, when leaving a surface, the wave packet can be sent to a
layer further away, if two or more surfaces are in contact, meaning delimited layers with zero
thickness, or if the layer controls the surface scattering itself.

A layer contains Components, which are geometric representations of the particles that build up
the layer. All the internal scattering process within a layer is perform by the components. Light can
be scattered at the component surface because of refractive index mismatch between two

http://openpaperopt.sourceforge.net/Doxygen/class_structure_object.html
http://openpaperopt.sourceforge.net/Doxygen/class_structure_object.html

Open PaperOpt

components. It can also be scattered, absorbed, or fluoresced within the component. The component
members are assigned in the derived StructureObject classes. The abstract class itself does not
have any component.

Thus, the layer's methods control that the wave packet remains within the layer and send the
wave packet to its different component according to the layer's component distribution, whereas the
components' methods control the scattering process. Each time the wave packet is translated within
a component, it must remain within the layer. Components point therefore to the layer they belong
to for access to the layer's methods.

3.3.1 Surface

Surface is the interface separating two layers in the simulated structure. The surface affects the
thickness variation of the surrounding layers and controls surface scattering between two layers
with refractive index mismatch. The Process method calculates the interception of the wave packet
with the surface (Intercept) and perform surface scattering. The Intercept method is also used in the
PropInLayer method of layers to check for surface interception when translating the wave packet
within the layer.

The parent class implements an ideally flat surface with constant microroughness. Currently
implemented derived class share the same Process method but differs in their topographical
representation in the Intercept method. The topography representation is based on a surface height
map with a defined interpolation procedure attached to each derived class. Some derived class can
also map spatially-resolved microroughness and surface normals.

The position of the surface in the simulated volume is defined by the position of the mean
surface height map. The mean of the surface height map is not necessary at zero. The way the
surface height map is defined will impact on the surrounding layers' thickness variation as shown in
Figure 3. Surfaces may coincide at some points, generating a zero thickness layer, but they cannot
cross each other.

top and bottoen sarface z=0

] — —— Thackness
Thic kress z parameter= Opm
paratteter — -

Figure 3: Thickness definition. Two examples on how to define surfaces and bulk thickness. Left:
the bulk thickness is the distance between the bounding surfaces whose heights values are
oscillating around their mean plane. Right: The surrounding surfaces have the same zero-level. The
bulk thickness is then defined by the surface profiles, which in that example only have negative
values.

3.3.2 HomogenousLayer

HomogeneousLayer is a simple non-structural layer that models a turbid media with a scattering
and absorption coefficient, and a phase function that controls the direction of the wave packet upon
scattering. It is implemented as having one single component of no particular shape,
HomogeneousScatteringMaterial, in order to access the method from the Component class.

3.3.3 StatisticalLayer

In a statistical layer (BaseSheet2 in current version), the components are generated dynamically
under the simulation. The thickness variation is static and defined by the delimiting surfaces, but the

http://openpaperopt.sourceforge.net/Doxygen/class_basesheet2.html
http://openpaperopt.sourceforge.net/Doxygen/class_homogeneous_scattering_material.html
http://openpaperopt.sourceforge.net/Doxygen/class_homogeneous_layer.html
http://openpaperopt.sourceforge.net/Doxygen/class_surface.html

Technical Documentation 1.0

inner structure of the layer is described statistically by means of component position- and size
distributions. The simulated reflectance is thus an average of the statistic representation and single
fibres will for instance not be visible to an image detector.

A Component is created upon intersection with a wave packet and is deleted after the wave
packet has left the component. The component size and shape is controlled by the component type
and generated according to statistical distribution. A statistical layer makes wuse of
ComponentGenerator derived classes to control the component generation. These classes can have
several member Distributions that describe each varying parameter of the component. A statistical
layer has accordingly one member ComponentGenerator for each component type in the layer.

Which type of component to be generated is controlled by the ComponentDistribution. The
currently implemented component distribution is only depth dependent, i.e. the components can be
heterogeneously distributed along the thickness direction but homogeneously distributed in the
plane of the layer.

The scattering at a StatisticalLayer interface can be controlled by the layer components, instead
of using a separate Surface object. This enables representing the surface of the layer by single
particles. In that case, the Process method in SimVolume will jump other the surface process and
send the wave packet directly to the layer. Since the same thing will happen when leaving the layer,
layer interface scattering must in this case be implemented in the layer Process. Surface scattering
at the component outer surface occurs also when the wave packet is coming from a non scattering
component, such a void, into the component.

The flow chart of the StatisticalLayer process is shown in Figure 4. The
ComponentDistribution generates first which component will be hit at layer entrance. The
component size and shape are generated according to its distributions. If layer surface scattering is
controlled by the component at the surface, scattering will occur at the component outer surface
based on the refractive index of the component and on the refractive index of the layer the wave
packet comes from. If surface scattering was instead previously simulated in a Surface object, the
wave packet will start within the first component. The component returns then if the wave packet is
absorbed, which next component it will enter, or if the wave packet hits a layer surface boundary. If
layer surface scattering is to be controlled by the layer components, the layer calls surface scattering
and send the wave packet to a new component if it is reflected back to the layer. Otherwise, the
wave packet is sent to the next surface object for further processing, unless it was absorbed.

Open PaperOpt

Wave packet entering layer,
going up or down

Get first component

Generate component

yes

Component
surface scattering

Get refractive index from previous
layer

Process wp in component
Component:Process

———— Scattering process at outer surface

if component surface scattering or if
coming from void component

— | Generate next component Delete component

Hit layer's surface
boundary

yes

Component
Surface scattering

Do surface scattering
Next Surface::Process

Stay in layer

y

End
Return next object, or 0 if wave packet was absorbed

Get component at layer boundary

Figure 4: Flow chart of the StatisticalLayer process.

3.3.4 StaticSheet

StaticSheet is a prototype for the simulation of light scattering from a generated static 3D network
of fibres. Based on the P3D model, it is yet only working with an own component Fiber, defined

10

http://openpaperopt.sourceforge.net/Doxygen/classp3d_1_1_fiber.html
http://openpaperopt.sourceforge.net/Doxygen/classp3d_1_1_staticsheet.html

Technical Documentation 1.0

under the p3d namespace. The fibre network generation process is illustrated in Figure 5.

The input data
could be from

input
parameters or
file
. Add fiber into
Init the paper volume »
volume

Shuffle the
fibers

Using Von Mises algorithm
to estimate angle information

for each fiber No
yes
Define the angle Define the angle Class SurfAcc herg_used to
. f .] find the best position for
information for each » information for each -
)) each fiber
fiber fiber segment
A
Estimate the depth

Plgce f|t_)ers into the » for each fiber and
simulation volume

make 3d paper

Class SurfAcc here used to
determine the depth of each
fiber in the paper

Figure 5: Generating a 3D paper structure.

For light scattering simulation, the network is converted into a more suitable format. During this
procedure, two strategies are used to accelerate the light scattering.
1. Bounding volume
This volume contains a given object and permits a simpler ray intersection check than the
object itself.
2. Spatial Subdivision
Spatial subdivision is processed top-down, partitioning a volume bounding the environment
into smaller pieces. The smaller volumes thus formed are assigned collections of objects
which are totally or partially contained with them.
Figure 6 shows the steps used to convert the data for faster ray-tracing.

11

Open PaperOpt

Generated class OrientClipBox

3D paper

class ClipBoxRef

Put the fiber
segment into) 3D paper prepared
; Add the bounding)

> boun(;hng box box to the lattice for fast |‘Ight
according to the scattering
length of the box

Convert the fiber

segment to base

element of fiber
segment

Y

Class RndFiber,
RndFiberSegment

Figure 6: Converting the generated network for light scattering simulation.

3.4 Detectors

All detectors are derived from the abstract class Detector, whose member mNext points to the next
detector so that all detectors are processed sequentially in the main function.

3.5 10

All input and output to Open PaperOpt are handled by the classes located in the IO namespace.
The underlying philosophy is that each XML element has a function that parses it and creates the
object it is associated with.

3.5.1 Input

This class is the starting point for reading of input XML files. The constructor takes the path to the
XML file from which reading should be done. After the Input class has been instantiated the root
element of the XML file is indicated by the public mRoot enum. Depending on what type of XML
file it is (simulation specification or staticSheet_definition), different methods are called to parse the
file.

3.5.2 XML parser

This class steps through the XML file one element at a time. To get the next element, the readNext
function is used. This class also contains methods for parsing common XML types such as
floatArray, float, tableDistribution, etc. An object of the XMLParser class is created by the Input
class, and then passed around to the different parsing functions that then read from it.

3.5.3 Output

This class contains methods for writing output files. There are three methods for each detector type,
one public and two private functions. The public function is called from the writeResults method in
the Detector classes and writes the XML code that describes the detector result to the XML results
file. It then calls one of the two private methods depending on if the program is compiled with HDF
support or not.

12

http://openpaperopt.sourceforge.net/Doxygen/class_i_o_1_1_x_m_l_parser.html
http://openpaperopt.svn.sourceforge.net/viewvc/openpaperopt/documentation/Doxygen/html/namespace_i_o.html

Technical Documentation 1.0

One private function is used to write binary output and HDF output. If the ENABLEHDF macro is
defined when the program is compiled the HDF output methods will be called, if ENARLEHDF is
not defined the binary output methods will be called instead.

4 Used libraries and setting

Open PaperOpt uses the irrXML reader for reading the input XML files. It is a small, fast C++
XML parser that is platform independent. It consists of one .cpp file and seven .h files that need to
be placed in a subfolder called /irrXML/ of the directory where the source code for Open PaperOpt
is located. It is available at http://www.ambiera.com/irrxml/ under the zlib license. Once compiled
with Open PaperOpt no other external files are needed.

For output, binary and HDF5 formats are supported. If Open PaperOpt is compiled with the
preprocessor definition ENABLEHDF the HDFS5 library will be linked into Open PaperOpt and
output will be in HDF5 format.

The HDFS5 library can be found at http://www.hdfgroup.org/HDFS5/. The HDF5 library uses two
further libraries for compression, ZLIB and SZIP. These libraries are also needed for compiling
Open PaperOpt.

5 Data format

Open PaperOpt uses XML for simulation specifications and results. One XML file is used as input
and one as output. For large volumes of data such as topographies, fluorescence matrices and table
distributions a binary (or HDFS5) format is used. These external files are described and referenced
from the input XML file.

The binary files do not contain any metadata describing the contents but just the raw data,
instead the contents of the binary files are described in XML. For matrices this includes information
such as the number of rows and columns and what datatype the elements have.

5.1 Specification files

The basic structure of the input XML file when running a light scattering simulation is shown
below.

<?xml version="1.0" encoding="utf-8"7?>
<simulation>

<description> </description>
<date></date>
<resultsDirectory></resultsDirectory>
<binaryDirectory></binaryDirectory>
<simulationVolume>

<size x="" y=""/>

<refIndexTop real="" imaginary=""/>
<refIndexBottom real="" imaginary=""/>
<lightSource nrOfWP="" type=""/>
<surface z="" type=""/>

<bulk type=""/>

<surface z="" type=""/>
</simulationVolume>

13

http://www.hdfgroup.org/HDF5/
http://www.ambiera.com/irrxml/

Open PaperOpt

<detector reflTrans="" type=""/>
</simulation>

The description element is optional and can be used to describe the simulation for later reference.
All result files will be placed in the directory specified in the resultsDirectory element, the
binaryDirectory element points to the directory where external binary files such as surface
topographies are stored. All references to binary files are relative from this directory.

For more details regarding the structure of the specification files, see Section 7 and the specification
examples in Section 9.

5.2 The XML Schema

An XML Schema describes the structure of XML documents, they are not strictly necessary but can
be used to validate XML documents and provide strong typing when used with a parser.

For the input and output XML documents there is an XML Schema available split up into tree files
that can be used. This schema specifies the general structure of the specifications file and all the
parameter types that the objects in the program uses.

The file simulationSchema.xsd describes the overall structure of specification, result and
bulkGenerate XML files. commonTypes.xsd describes the structure of the different parameters used
by the objects, and paperObjects.xsd specifies which parameters are used by all the different types
of objects.

The Schema can be used when writing specification files manually, for example using Visual Studio
2005, or some XML editing tool. VS2005, for example, will display a list of surface types and will
also tell you what parameters each type uses.

5.3 External input files

In the specification file different external files are referenced that contain large amounts of array or
tabular data. Currently all these external files are in a simple binary format or in ascii format.

The binary files used as input can be loaded in Matlab using the fopen and the fread commands.
To use the fread command, the dimension of the array or table are needed, and these are defined in
the XML file.

5.4 Height maps used in Surface classes

The light scattering model uses height maps to define surfaces and interfaces between different
layers such as homogenous or basesheet layers. A height map is simply a matrix of deviations from
the mean plane of the surface in micrometers. The XML describing a height map is shown below:
<heightMap name="printSurface">
<size x="10000" y="10000"/>
<floatArray>
<dimensions nrColumns="50" nrRows="50"/>
<binaryFile>
<filePath>printSurface.bin</filePath>
</binaryFile>

</floatArray>
</heightMap>

The size element describes the size of the surface in micrometers, while the dimensions element
specifies the resolution of the height map. The actual data of the topography is stored in the file

14

Technical Documentation 1.0

indicated by the filePath element. The matrix is stored row wise and the elements are 32 bit
floating point numbers.

To load this height map in Matlab the following command can be used.
>> id = fopen('printSurface.bin')
>> arr = fread(id, [50 50], 'float');

5.5 Tables used in the DistributionTable class

Tables are used for the DistributionTable class, they consists of a sampling vector and a probability
density function forming two columns of a table. As with matrices the data is stored row wise in a
binary file while the contents are described in XML. Example of XML describing a table of fiber
widths:

<table nrRows="51">

<column name="width" dataType="double"/>
<column name="freq" dataType="double"/>
<binaryFile encoding="1littleendian">
<filePath>efibwidth.bin</filePath>

</binaryFile>
</table>

Currently, only the double datatype is used, which is a 64 bit floating point number. In this example
the file fillersizel.bin would contain 102 64 bit floating point numbers stored row wise, i.e. width
freq width freq etc.

5.6 Tables used in the DistributionComponents class

The DistributionComponents class is used in statistical Basesheets to determine which component a
wave packet will hit, this will depend on the depth the wave packet is currently at. This class needs
a table of probabilities as input, the XML code for that table is shown below.
<table nrRows="799">

<column name="depth" dataType="double"/>

<column name="pore" dataType="double"/>

<column name="fiber" dataType="double"/>

<column name="filler" dataType="double"/>

<binaryFile>

<filePath>e60Comp.bin</filePath>

</binaryFile>
</table>

Here the order of the column elements depends on how the contents of the binary file are laid out,
also the names of the columns are important and must be one of the four shown above.

In this example the file e60Comp.bin would consist of 4*799 64 bit floating point numbers. The
pore, fiber and filler columns contain the relative frequencies of these components at the depth
indicated by the depth column. Note that the depth column and one of the other columns is required.

5.7 Static fiber networks

Output file is generated by the static fibre network process. It can then be used as input in a light
scattering specification file. When a fibre network is generated, the program saves one file
containing the network itself, and two files containing the bounding surfaces of the generated fibre

15

Open PaperOpt

network. The fibre network file description is given below.

order data contents data type
1 the number of the fibers int
the following will be the data for each fiber
2 length of fiber double
3 radius of fiber double
4 Form factor of fiber double
5 segment length double
6 the number of segments int
7 angle of the fiber double
8 indicator of local angle for fiber segment int
1 ‘Fhe segments have their own angle
information
0 the segments don't have angle information
9 the segments angle information (data size=the number of segments) |double
10 indicator of fiber int
segment
1 the segments exist
0 the segments don't exist
1 tzl;e fiber segments information (data size=the number of segments + FiberSegment

6 List of input parameters

This section describes the input parameters used by the different types of surfaces, bulks, light
sources and detectors. The tag name of a parameter indicates in what way it is used. The parameters
may be of different types such as floatType or boolType. The structures of the different types of

parameters are described in the XML Schema. Some examples are shown below.
<wavelengths>0.3 0.32 0.34 0.36 0.38 0.52</wavelengths>
<distance>10000</distance>

<rmsMin>0</rmsMin>

<rmsMax>20</rmsMax>

The distance, rmsMin and rmsMax elements are all of floatType and thus have the same structure.
The wavelengths element is of type floatListType.

6.1 Surfaces

All surface elements have the attributes z and #ype. z is the position of the surface in the simulation
volume and type describes what kind of surface it is. Below is a list of currently implemented
surface types and their parameters. Element type refers to the basic tags described above and name
is the attribute of the tag that describes what the parameter is. Required tags are marked with a x,

16

and optional tags with -.

<surface z="0" type="flat">

<rmsMin>0</rmsMin>
<rmsMax>20</rmsMax>

Technical Documentation 1.0

</surface>

Surface type
Tag name |Element type flat | TopoBilinear topoTriangulated | flatNormal | subFlat
rmsMin floatType - - - - -
rmsMax floatType - - - - -
heightMap |heightMapType X X X X
roughMap | V2FloatArrayType - - - -
normalMap | V3FloatArrayType - -
inkLayer |inkLayerType -
normallnter | boolType X X
polation
normalFact |integerType X X
or
normallnter | boolType -
polatioon

Note that rms and a roughness map can not be used at the same time. The same goes for topograhies

and normal maps. Normalfactor is only required when a topography is used.

An inkLayer is defined as

Tag name Element type
Xmin floatType
Xxmax floatType
ymin floatType
ymax floatType
screenAngle floatType
dropletSpacing floatType
dropletWidth floatType
dropletHeight floatType
scatteringProperties | scatteringProperties
6.2 Layers

All bulk layer elements have the type attribute. An example bulk definition is shown below.

17

Open PaperOpt

<bulk type="homogeneouslayer">
<scatteringProperties name="wall">
<scatteringParameter lambda="0.2" s="0" a="0.0003" g="0" n real="1.5" n imag="0"/>
<scatteringParameter lambda="0.7" s="0" a="0.0003" g="0" n real="1.5" n imag="0"/>

</scatteringProperties>
</bulk>

6.2.1 HomogenenousLayer

Tag name Element type Use

fluorescence fluorescenceType optional

scatteringProperties | scatteringPropertiesType | required

6.2.2 StatisticalLayer

This is a statistic basesheet where pores are ellipsoidal.

Tag name Element type Use

componentsDistribution | componentsDistributionType | required
fiber basesheetFiberType required
pore basesheetPoreType optional
filler basesheetFillerType optional

Note that the fiber, pore and filler elements are the same as those used by basesheet2. So see section
7.2.3 for a description of basesheetFiberType, basesheetPoreType and basesheetFillerType.

6.2.3 basesheet2

In addition to the ordinary basic types, the basesheet also contains fibers, fillers and pores each
having their own set of parameters described below.

Tag name Element type Use
topoScattering boolType required
componentsDistribution | componentsDistributionType | required
fiber basesheetFiberType required
pore basesheetPoreType optional
filler basesheetFillerType optional
basesheetFiberType:

Tag name Element type Use

rmsMin floatType optional
rmsMax floatType optional
contactReduction |floatType required
wallScatParams |scatteringPropertiesType required

18

lumenScatParams | scatteringPropertiesType required

theta constantDistributionType or |required
tableDistributionType or
ellipticDistributionType

phi constantDistributionType or |required
tableDistributionType or
ellipticDistributionType

tilt constantDistributionType or | required
tableDistributionType

length constantDistribution or required
tableDistributionType

width constantDistributionType or | required
tableDistributionType

wallThickness constantDistributionType or |required
tableDistributionType

ellipticity constantDistributionType |required

basesheetFillerType:

Tag name Element type Use

rmsMin floatType optional

rmsMax floatType optional

contactReduction | floatType required

fillerScat scatteringProperties Type required

fluorescence fluorescenceType optional

theta constantDistributionType or | required
tableDistributionType or
ellipticDistributionType

phi constantDistributionType or | required
tableDistributionType or
ellipticDistributionType

aAxis constantDistributionType or |required
tableDistributionType

bAxis constantDistributionType or | optional
tableDistributionType

ellipticity constantDistributionType or | required
tableDistributionType

if bAxis is omitted it will use the same distribution as aAxis.

Technical Documentation 1.0

19

Open PaperOpt

basesheetPoreType:

Tag name Element type Use
rmsMin floatType optional
rmsMax floatType optional
contactReduction | floatType required
theta constantDistributionType or | Required

tableDistributionType or
ellipticDistributionType

phi constantDistributionType or |required
tableDistributionType or
ellipticDistributionType

tilt constantDistributionType or | required
tableDistributionType

aAxis constantDistributionType or | required
tableDistributionType

bAxis constantDistributionType or | optional
tableDistributionType

ellipticity constantDistributionType |required

If bAxs is omitted, it will use the same distribution as aAxis.

6.2.4 Static basesheet

After a static basesheet has been generated it can be used like other layers/basesheets.

6.3 Light Sources

All lightSource elements have the type and nrOfWP attributes. Below is a list of the types currently
implemented. If several light sources are present, they must have the same wavelengths. Required
tags are marked with a x, and optional tags with -.

<lightSource xsi:type="lambert" nrOfWP="1000">
<wavelengths>0.3 0.32 0.34 0.36 0.38 0.4 0.420.52</wavelengths>
<distance>10000</distance>

</lightSource>

Light source type
Tag name Element type beam elrepho | lambert
wavelengths floatListType |x X X
weights floatListType |- - -
polarizationValue | floatType - - -
theta floatType X

20

Technical Documentation 1.0

phi floatType X

distance floatType X

beamCentre floatListType |- -
centreDiameter | floatType - -
Xmin floatType - -
Xxmax floatType - -
ymin floatType - -
ymax floatType - -

If beamCentre is present, the beam will have a pencil distribution on the surface, if centreDiameter
is also present it will have a disc distribution. Otherwise it will use a uniform distribution.

6.4 Detectors

All the detectors have the reflTrans attribute which either has the value “reflectance” or
“transmittance”. Example detector definition. Required tags are marked with a x, and optional tags

with -.

<detector type="image" reflTrans="reflectance">

<numAperture>0.4</numAperture>

<distance>10000</distance>

<resX>512</resX>
<resY>512</resY¥Y>
</detector>
Detector type
Tag name Element type | error |ars [image |arsGlobe plr
apertureDiameter | floatType
distance floatType X X X
thetaMin floatType
thetaMax floatType
thetaStep floatType
phiMin floatType
phiMax floatType
phiStep floatType
numAperture X
theta -
phi -
resX X

21

Open PaperOpt

resY X

nrTheta integerType X

nrPhi integerType X

accurate boolType X

aperture floatType X
singleScattering |boolType X
startingZ floatType X
lastZ floatType X
stepZ floatType X
7 Output

The output of Open PaperOpt consists of one XML file and several binary or HDFS5 files. The XML
file contain general simulation results and metadata describing the binary and HDFS files.

If the program was compiled with HDF all detector results are placed in HDFS5 files, if the program
was not compiled with HDF the results are instead placed in binary files.

In either case, all output files will be placed in the folder indicated by the resultsDirectory element
in the input specification file. If the element is not present output files will be placed in the same
directory as the program executable.

The detector output files are given default names and are numbered if more than one detector of the
same type is defined in the input specification file. E.g. the output of the first image detector defined
will be placed in “imageResults1.h5”, the second in “imageResults2.h5” etc.

8 Coding

8.1 Naming convention

As a long term running project, different programmers will join in the project in the future. In order
to reduce the effort needed to read and understand source code and enhance source code
appearance, the following set of rules will facilitate the coding work (adapted from

http://www.possibility.com/Cpp/CppCodingStandard.html#names),

Type Convention Example

Class name e User Upper case letters as word class FiberSegment
separators,lower case for the rest of a class Fiber
word

» First character in a name is upper case

e No underbars(‘_’)

File name and * File name should be the same as class |FiberStatic.cpp, FiberStatic.h
Method name name defined in the file

¢ Use the same rules as for the class public:

name int NumSeg() ;

» For header file we use .h extension void GenerateSegments();

* For implementation file we use .cpp

22

http://www.possibility.com/Cpp/CppCodingStandard.html#names
http://www.possibility.com/Cpp/CppCodingStandard.html#names

Technical Documentation 1.0

extension

Class attribute name

e Attribute names should be prepended
with the character 'm'".

o after the 'm' use the same rules as for
class names.'m' always precedes other
name modifiers like 'p' for pointer.

Prepending 'm' prevents any conflict with
method names. Often your methods and
attribute names will be similar, especially for
accessors
public:
double
double
private:
double
double

Length () ;
Radius () ;

mLength;
mRadius;

Method argument
name

¢ The first character should be lower
case.

¢ All word beginnings after the first
letter should be upper case as with class
names.

Always tell which variables are passed in
variables.
Using names similar to class names without
conflicting with class names.
class Fiber
{
public:

void
GetSegmentCoordinates (int
segNo,V2 <double>& rvVl,vV2
<double>& rV2) const ;
}

Variable name on the
stack

¢ Use all lower case letters
e Use' 'as the word separator.

The scope of the variable is clear in the code.
Now all variables look different and are
identifiable in the code.

double Fiber::Weight () {

return
mLength*mRadius*mRadius*4*gFibe
rRaw; }

Pointer variable

» pointers should be prepended by a 'p'
in most cases

¢ place the * close to the pointer type
not the variable name

String* pName= new String;
String* pName, name,

address; // note, only pName is
a pointer.

Reference variable and
function returning
reference

¢ References should be prepended with

1.0

T.

class Fiber
{
public:

void

GetSegmentCoordinates (int
segNo, V2 <double>& rV1,V2
<double>& rV2) const ;
private:

FiberSegment& mrSegment;

}

Global variable

¢ Global variables should be prepended
with a'g'.

double gFiberRaw;

Global constant

* Global constants should be all caps
with ' ' separators.

const int A GLOBAL CONSTANT= 5;

Static variable

» Static variables may be prepended
with 's'.

static StatusInfo msStatus;

Type name

* When possible for types based on native

typedef uintl6 ModuleType;

23

Open PaperOpt

types make a typedef. typedef uint32 SystemType;
* Typedef names should use the same
naming policy as for a class with the

word Type appended.
Enum name Label All Upper Case with ' ' Word enum Occurrence
Separators {
NOTHING,
SCATTERING,
ABSORPTION
}i
#define and macro * Put #defines and macros in all upper #define FIBER C (5.4e-8)
name using ' ' separators.
C function name Ina C++ project there should be very ~ |[Makes C functions very different from any C+
few C functions. + related names.

static void add_heights (int&

o sp_added, int numCalc, SurfAccé&
of all lower case letters with ' ' as the heights, Fiber* f,double rad)

word delimiter. {

}

¢ For C functions use the GNU convention

8.2 JavaDoc

JavaDoc convention is used to automatically generate the online documentation.

~
*
*

Returns an Image object that can then be painted on the screen.
The url argument must specify an absolute {@link URL}. The name
argument is a specifier that is relative to the url argument.
This method always returns immediately, whether or not the
image exists. When this applet attempts to draw the image on
the screen, the data will be loaded. The graphics primitives
that draw the image will incrementally paint on the screen.

@param url an absolute URL giving the base location of the image
@param name the location of the image, relative to the url argument
@return the image at the specified URL
@see Image
/
public Image getImage (URL url, String name) {
try |
return getImage (new URL (url, name));
} catch (MalformedURLException e) ({
return null;

5k ok X X X X X X % % %

}
}

A more detail description of JavaDoc could be found here How to Write Doc Comments for the
Javadoc Tool.

9 Examples

24

http://java.sun.com/j2se/javadoc/writingdoccomments/index.html
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html

Technical Documentation 1.0

9.1 Light sources and detectors

This examples simulates four different light sources, an image detector, and a angle-resolved
scatterometer (ARS) detector. The simulation volume consists of only one flat surface, required to
define the size of the simulation volume, and the detectors detects the spatial- and angle-resolved
distributions of the light sources. The light sources are defined at 4 different wavelengths but their
weight is only different from 0 at one wavelength. Since every light source is simulated at a one
own wavelength, their distributions can be distinguished in the detectors. The XML specification

file is downloadable from SpecsFile.xml.

<?xml version="1.0" encoding="utf-8"?>

<simulation xmlns="http://tempuri.org/simulationSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<description>Example light sources and detectors 1</description>
<!__~k***********************

* This example simulates light sources with different spatial and angular

* distributions. No scattering nor absorption occur in simulated structure

* so the light is propagates straight to the detectors, which then detect the

* spatial and angular distributions of the light sources.

Frhkhhhkhkhkhkdrhhhhhkhkhkrrhhhhhkhhdrhhhhhkhhkrrhhhhhhhkdrrhhhhhhkdkrrhhhhhhhkrrrhhhdh__>
<date>2009-01-20</date>

<simulationVolume>
<|__~k************************

* Simulation volume Ilmm*lmm

R e e e e e e e e e e

<size x="1000" y="1000"/>

Kk ok sk sk ok

* The refractive index of the surrounding is set to 1

* (over and below simulation strucutre

~k************~k~k~k***********~k~k~k************~k~k~k*************************__>
<refIndexTop real="1" imaginary="0"/>

<refIndexBottom real="1" imaginary="0"/>
<‘__***

* Light sources definition:

* Every light source must be defined for all wavelengths

* Here the spectral weight is different from zero only at one wavelength,
* i.e. each light source is monochromatic. This will enable visualising

* the light source distributions individually in the detectors.

Kok xkkkkkkkkkkkkkkkkhkkkkhkkkkhhkkkhkhkkkkhkkhkkkkhkkkhkkkhkkkkhkkhkhkkkhkkxhkkxkk_—>

Kk Sk ok sk ok sk sk sk ok sk ok sk sk ok sk ok sk ok sk sk sk sk sk sk ok sk ok ok sk ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK

* Lambertian illumination illuminating the surface homogenously.

ok ok K ok K ok K ok kK ok kK K K K ok K ok K ok ok K ok ok K ok ok K K K ok K ok K ok ok Kk kK ok kK kK K kK Kk kK kR Kk kK —
<lightSource xsi:type="lambert" nrOfWP="000000">

<wavelengths>0.3 0.4 0.5 0.6</wavelengths>

<weights>1 0 0 0</weights>

</lightSource>
<|__***

* Elrepho like angular distribution illuminating the surface homogenously.

Krhhhkhhk kA A rhhhhhkhk kA r bk hkhhkhk kA r bk hhhkhkhk A rhhhhkhk kA rhkhhhhkhkhkdkrrhhhhhkhkdkrrhhhhh__>

<lightSource xsi:type="elrephoLightSource" nrOfWwP="0000">

25

http://openpaperopt.svn.sourceforge.net/viewvc/openpaperopt/Examples/ExampleLightSourceDetector/SpecsFile.xml

Open PaperOpt

<wavelengths>0.3 0.4 0.5 0.6</wavelengths>
<weights>0 1 0 0</weights>

</lightSource>
Kl m—khkkhkkk Ak hhkhhk Ak dhkhhk Ak dhkrhk Ak dhkrhk Ak dhkrhk Ak dhkrhkrhdhkrhkrhdkhkkrkrhdhkxkx

* Collimated beam at normal incidence illuminating the surface homogenously.

***********~k~k~k*****************~k~k~k*************************************__>
<lightSource xsi:type="beam" nrOfwWpP="0000">

<wavelengths>0.3 0.4 0.5 0.6</wavelengths>

<weights>0 0 1 0</weights>

<polarizationValue>0</polarizationValue>

<theta>0</theta>

<phi>0</phi>

<distance>10000</distance>

</lightSource>
<|__‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*****‘k*‘k‘k‘k‘k‘k‘k‘k*************************

* Collimated beam at 450 incident angle illuminating the surface

* on a square area.

hhkhk Ak A rhhhhhkhkhrrhhhhhhkhrrhhhhhhkhrrhhhhhhhbrhhhhhkhhkdrrhhhhkhhrrhhhhhhhrrrhh_—>
<lightSource xsi:type="beam" nrOfWP="10000">

<wavelengths>0.3 0.4 0.5 0.6</wavelengths>

<weights>0 0 0 1</weights>

<polarizationValue>0</polarizationValue>

<theta>0</theta>

<phi>0</phi>

<distance>10000</distance>

<!--no effect since only angular distribution matters -->

<xmin>100</xmin>

<xmax>500</xmax>

<ymin>100</ymin>

<ymax>500</ymax>

</lightSource>

Ll m—kkkkkrhhhhhkhk kA r bk hhhkhk kA r bk hhhkhk kA rhhhhhkhk kA rhkhhhhkhkhkdkrhhhhhhkhkdkrrhhhhkhkhkxxxx

* The program requires at least on paper object to be defined
* A flat surface is used. Since refractive index above and below that
* suface are equal, light will continue straight to the detectors

Kkkkkkkkkhkkhkkhkkhkhkkhkkkhkkkhkkkkhkkkhkkkkkkkkkkkkkkhkkkhkkxkkkxkhkkxkkkxk——>

<surface z="0" xsi:type="flat"> </surface>
/simulationVolume>

<!__*~k~k~k~k~k~k~k***********~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k***********************************
* Detectors
* An image detector and a goniophotometer (Angle resolved scatterometer
* (ARS)) . Detectors are set to "tranmsittance" since all light is
* transmitted.
~k**~k~k~k~k~k~k~k~k~k~k~k~k~k~k**~k~k~k~k~k**~k~k~k~k~k**~k~k~k~k~k~k~k~k~k~k~k~k~k~k**~k*********************__>
<detector xsi:type="image" reflTrans="transmittance">
<numAperture>1</numAperture>

<distance>100000</distance>

26

Technical Documentation 1.0

<resX>512</resX>
<resY>512</res¥Y>

</detector>
<|__~k************************

* This detector is commented because it is very slow
khkkhkkkkx
<detector xsi:type="ARS" reflTrans="transmittance">
<apertureDiameter>28000</apertureDiameter/>
<distance>500000</distance
<thetaMin>-50</thetaMin>
<thetaMax>50</thetaMax>
<thetaStep>1</thetaStep>
<thetaMin>-50</thetaMin>
</detector> -—>
<detector xsi:type="ARSGlobe" reflTrans="transmittance">
<distance>500000</distance>
<nrTheta>50</nrTheta>
<nrPhi>50</nrPhi>
<accurate>false</accurate>

</detector>
</simulation>

The plotresults.m Matlab® file visualises the detector results from this example:

27

http://openpaperopt.svn.sourceforge.net/viewvc/openpaperopt/Examples/ExampleLightSourceDetector/plotresults.m

Open PaperOpt

Larnbertian lllurmination Elrepho I\E[yninatinn
SS{D;_-_',,;;_%‘_

0.6

Azimuthal angle 0 © Image Detector from Square lllumination

Larnbertian
-] === Elrepho
—— Boam 0° 200

Beam 45 ° [

400

pm

600

Iog(BSDF)

800

4 H H H ; H H H H 1000
1] 10 20 30 40 50 B0 70 80 90 o 200 400 GO0 800 1000
Scattering angle [©) Hm

9.2 Homogeneous layers

This example simulates the light scattering from a turbid layer at one wavelength. Since the
refractive index of the layer is different from 1, light is reflected at the interfaces between the layer
and air. The effect of surface microroughness and layer refractive index on the Elrepho detector
reflectance factor can be simulated by varying the microroughness <rmsMax>, and the refractive
index <n real> The XML specification file is downloadable from

ExampleHomogeneousl ayer.xml.

<?xml version="1.0" encoding="utf-8"?>
<simulation xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://tempuri.org/simulationSchema"
xsi:schemaLocation="http://tempuri.org/simulationSchema
C:/ScatSimMC/Examples/SimulationSchema/simulationSchema.xsd">
<description>Test Saunderson</description>
<date>2008-10-06</date>
<!-- <resultsDirectory>C:\results</resultsDirectory> -->
<simulationVolume>
<size x="10000" y="10000"/>
<refIndexTop real="1" imaginary="0"/>
<refIndexBottom real="1" imaginary="0"/>
<lightSource xsi:type="lambert" nrOfwP="100000">
<wavelengths>0.3</wavelengths>
<weights>1</weights>
<distance>10000</distance>
</lightSource>
<!-- Define upper surface -->

28

http://openpaperopt.svn.sourceforge.net/viewvc/openpaperopt/Examples/ExampleHomogeneousLayer/ExampleHomogeneousLayer.xml
http://openpaperopt.svn.sourceforge.net/viewvc/openpaperopt/Examples/ExampleHomogeneousLayer/ExampleHomogeneousLayer.xml

Technical Documentation 1.0

<surface z="0" xsi:type="flat">
<rmsMin>0</rmsMin>
<rmsMax>0</rmsMax>

</surface>
<bulk xsi:type="homogeneouslayer">
<!--This defines the optical properties of the layer -->

<scatteringProperties name="HomogeneousLayerl">
<scatteringParameter lambda="0.3" s="0.01" a="0.0001" g="0"
n real="1.6" n imag="0"/>
<scatteringParameter lambda="0.32" s="0.01" a="0.0001" g="0"
n real="1.6" n imag="0"/>
</scatteringProperties>
</bulk>
<!-- define the lower surface-->
<surface z="-93" xsi:type="flat">
<rmsMin>0</rmsMin>
<rmsMax>0</rmsMax>
</surface>
</simulationVolume>
<!-- detectors>
<detector xsi:type="elrephoDetector" reflTrans="reflectance"/>
</simulation>

9.3 Statistical structural layers

Examples of statistical structural layers are downloadable from ExampleStatisticalStructureallayer
. Note that all required input files (.txt and .bin) should be loaded into the same map as the xml
specification file. These examples simulate the light scattering of real paper sheets of eucalyptus
and pine pulps, from measured input parameters, such as fibre length distribution, thickness, etc.

9.4 Static structural layers

This examples show how to generate a static fibre which has 50 different fibres. These fibres have
different length and widths which are defined by the distribution function. The XML specification
file is downloadable from StrucuralLayerExample.

<?xml version="1.0" encoding="utf-8"?>
<staticBulkGeneration xmlns="http://tempuri.org/simulationSchema">
<!__***
* This example illustrate generating a static fiber network
* with size of 1000 * 1000, there are 50 fibers in the
* fiber network. the length and radius of each fiber is
* different and are generated by the given distribution function
**__>
<bulk xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:type="genStaticBasesheet">
<!--the size of the fiber network-->
<sizeX>1000</sizeX>
<sizeY>1000</sizeY>
<!--the segment length-->

<segmentLength>2</segmentLength>

<!--add different kind of fibers-->

29

http://openpaperopt.svn.sourceforge.net/viewvc/openpaperopt/Examples/ExampleStaticStructuralLayer/staticBulkGenWithDistOnUnflatSurface.xml?view=log
http://openpaperopt.svn.sourceforge.net/viewvc/openpaperopt/Examples/ExampleStatisticalStructurealLayer/

Open PaperOpt

<fiber>
<!-- the number of fibers -->
<numberOfFibers>50</numberOfFibers>
<!-- the radius of fibers -->
<width xsi:type="tableDistribution">
<interval from="0.5" to="49.5"/>
<table nrRows="51">
<column name="width" dataType="double"/>
<column name="length" dataType="double"/>
<binaryFile encoding="1littleendian">
<filePath>efibwidth.bin</filePath>
</binaryFile>

</table>

</width>
<!-- the length of fibers -->
<length xsi:type="tableDistribution">
<interval from="50" to="4950"/>
<table nrRows="51">
<column name="length" dataType="double"/>
<column name="prob" dataType="double"/>
<binaryFile encoding="1littleendian">
<filePath>efiblength.bin</filePath>
</binaryFile>
</table>
</length>
<!-- the Form Factor of fibers -->

<formFactor xsi:type="constantDistribution" value="0.95"/>

</fiber>
<fiber>
<numberOfFibers>50</numberOfFibers>
<width xsi:type="constantDistribution" value="10"/>
<length xsi:type="constantDistribution" value="1000"/>
<formFactor xsi:type="constantDistribution” value="0.95"/>
</fiber>
<!__***
* first ,please remove the heightmap tag to generate
* a fiber network on flat surface second , if you want to
* generate a fiber network on an uneven surface, use the heightmap and

* set the filepath tag to the file which contain unflat surface information
**__>
<!—
<heightMap name="upper">

<size x="1000" y="1000" />
<floatArray>

<dimensions nrColumns="256" nrRows="256" />

30

Technical Documentation

1.0

<binaryFile>
<filePath>base surfl.bin</filePath>
</binaryFile>

</floatArray>
</heightMap>

-—>
<!__‘k*‘k*‘k**‘k*‘k************************
*
* the generated fiber network will be stored in the following file
*
KhAkA A hhhhhhkhkdArhhhhhhkhkrrhhhhhhkhkrrhhhhhhkhkrrhhhhhhkhkrrhhhhhhkhkrrrhhhhdh__>
<outputFilenamexXML>bulkl.xml</outputFilenameXML>
<!__‘k*‘k*‘k*‘k*‘k************************
*
* the surface on the top of the fiber network will be saved in the following file
*

KhAkArhhhhhhhkrArhhhhhhkhkdArhhhhhhkhkdrrhhhhhhhkrrhhhhhhkhkrrhhhhhhkhkrrhhhhhkdhkrrr—_—>

<topSurfaceFilenameXML>surfl.xml</topSurfaceFilenameXML>

</bulk>
</staticBulkGeneration>

The following picture is generate from the above XML file and visualized by the Cosmo player.

Figure 7: Fiber network used light scattering computation

31

Open PaperOpt

This examples using a light source and an image detector to do the light scattering on the generated
fibre network which is illustrated above, The XML specification file is downloadable from
p3d_specs.xml.

<?xml version="1.0" encoding="utf-8"?>

<simulation xmlns="http://tempuri.org/simulationSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<description>Light scattering simulation no.l</description>
<date>2008-10-06</date>
<resultsDirectory>c:\results</resultsDirectory>
<simulationVolume>

<size x="1000" y="1000"/>

<refIndexTop real="1" imaginary="0"/>

<refIndexBottom real="1" imaginary="0"/>

<lightSource xsi:type="beam" nrOfWP="10000000">
<wavelengths>0.8</wavelengths>
<weights>1</weights>
<polarizationvValue>0.5</polarizationvValue>
<theta>0.5</theta>
<phi>0.4</phi>
<distance>10000</distance>
<!--no effect since only angular distribution matters -->
<xmin>0</xmin>
<xmax>1000</xmax>
<ymin>0</ymin>
<ymax>1000</ymax>

</lightSource>

<surface z="0" xsi:type="topoBilinear">
<heightMap name="upper">
<size x="1000" y="1000" />
<floatArray>
<dimensions nrColumns="256" nrRows="256" />
<binaryFile>
<filePath>surfl surface upper.bin</filePath>
</binaryFile>
</floatArray>
</heightMap>

</surface>

<bulk type="staticBasesheet">
<sizeX>1000</sizeX>
<sizeY>1000</sizeY>

<numberOfFibers>100</numberOfFibers>

32

http://openpaperopt.svn.sourceforge.net/viewvc/openpaperopt/Examples/ExampleLightSourceDetector/SpecsFile.xml?view=log

Technical Documentation 1.0

<segmentLength>2</segmentLength>
<totalWeight>7.84363e-006</totalWeight>
<fiber>
<binaryFile>
<filePath>bulkl fibers.bin</filePath>
</binaryFile>
</fiber>
<surfaceStructure>
<surfTop>58.79</surfTop>
<surfMeanTop>12.7985</surfMeanTop>
<surfBottom>-3.33067e-016</surfBottom>
<surfMeanBottom>7.39313</surfMeanBottom>
</surfaceStructure>
<validity>
<initFlag>13</initFlag>
<segmentType>1</segmentType>
</validity>
</bulk>

<surface z="-93" xsi:type="topoBilinear">
<heightMap name="lower">
<size x="1000" y="1000" />
<floatArray>
<dimensions nrColumns="256" nrRows="256" />
<binaryFile>
<filePath>surfl surface lower.bin</filePath>
</binaryFile>
</floatArray>
</heightMap>
</surface>

</simulationVolume>

<detector xsi:type="image" reflTrans="reflectance">
<numAperture>1l</numAperture>
<distance>10000</distance>
<resX>256</resX>
<resY>256</resY>

</detector>
</simulation>

33

	1 GNU General Public License (GPL)
	2 Scope
	3 Program overview and main classes
	3.1 WavePacket and LightSource
	3.2 SimVolume
	3.3 StructureObject (surfaces and layers)
	3.3.1 Surface
	3.3.2 HomogenousLayer
	3.3.3 StatisticalLayer
	3.3.4 StaticSheet

	3.4 Detectors
	3.5 IO
	3.5.1 Input
	3.5.2 XML parser
	3.5.3 Output

	4 Used libraries and setting
	5 Data format
	5.1 Specification files
	5.2 The XML Schema
	5.3 External input files
	5.4 Height maps used in Surface classes
	5.5 Tables used in the DistributionTable class
	5.6 Tables used in the DistributionComponents class
	5.7 Static fiber networks

	6 List of input parameters
	6.1 Surfaces
	6.2 Layers
	6.2.1 HomogenenousLayer
	6.2.2 StatisticalLayer
	6.2.3 basesheet2
	6.2.4 Static basesheet

	6.3 Light Sources
	6.4 Detectors

	7 Output
	8 Coding
	8.1 Naming convention
	8.2 JavaDoc

	9 Examples
	9.1 Light sources and detectors
	9.2 Homogeneous layers
	9.3 Statistical structural layers
	9.4 Static structural layers

